pyCADD.Dance.algorithm package
Submodules
pyCADD.Dance.algorithm.DL module
- class pyCADD.Dance.algorithm.DL.MLP(input_dim: int, hidden_dim: int, output_dim: int, device: device | None = None)[source]
Bases:
Module
pytorch实现的多层感知机
- forward(x)[source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- initialize(method='normal')[source]
初始化模型参数
Parameters
- methodstr
初始化方法 normal : 正态分布初始化 xavier_uniform : Xavier 均匀初始化 xavier_normal : Xavier 正态分布初始化 kaiming_uniform : Kaiming 均匀初始化 kaiming_normal : Kaiming 正态分布初始化
- training: bool
pyCADD.Dance.algorithm.consensus module
- class pyCADD.Dance.algorithm.consensus.Average(lower_is_better=False)[source]
Bases:
_Consensus
算数平均值模型 算术平均数定义为:
平均数 = 求和(x_i) / 总数
- class pyCADD.Dance.algorithm.consensus.GeoMean(lower_is_better=False)[source]
Bases:
Geo_Average
几何平均值模型 GeoMean作为Geo_Average的别称
- class pyCADD.Dance.algorithm.consensus.Geo_Average(lower_is_better=False)[source]
Bases:
_Consensus
几何平均值模型 几何平均值定义为:
几何平均数 = 连续乘积(x_i)^(1/n)
- class pyCADD.Dance.algorithm.consensus.Maximum(X=None, y=None, lower_is_better=False)[source]
Bases:
_Consensus
最大值模型
- class pyCADD.Dance.algorithm.consensus.Mean(lower_is_better=False)[source]
Bases:
Average
算术平均值模型 Mean作为Average的别称
- class pyCADD.Dance.algorithm.consensus.Minimum(lower_is_better=False)[source]
Bases:
_Consensus
最小值模型
- pyCADD.Dance.algorithm.consensus.average(data: DataFrame, method: Literal['ave', 'geo'] = 'ave')[source]
平均值算法 : 计算并生成DataFrame对接数据的平均值列 ave 算数平均 geo 几何平均
Parameters
- dataDataFrame
待计算数据
- methodstr
平均值计算方法 ( 算术平均值ave | 几何平均值geo )
Return
- Series
平均值结果数据列
- pyCADD.Dance.algorithm.consensus.maximum(data: DataFrame)[source]
最大值 : 提取DataFrame数据列中的最大值
Parameters
- dataDataFrame
待计算数据
Return
- Series
最大值结果数据列