pyCADD.Dance.algorithm package
Submodules
pyCADD.Dance.algorithm.DL module
pyCADD.Dance.algorithm.consensus module
- class pyCADD.Dance.algorithm.consensus.Average(lower_is_better: bool = False)[source]
Bases:
_ConsensusArithmetic mean consensus model.
Calculates arithmetic mean of molecular descriptor values across conformations. Arithmetic mean is defined as: mean = sum(x_i) / count
- __init__(lower_is_better: bool = False) None[source]
Initialize arithmetic mean consensus algorithm.
- Parameters:
lower_is_better (bool) – Whether lower values indicate better performance.
- fit(X: DataFrame, y: Series = None, ignore_nan: bool = True) None[source]
Calculate arithmetic mean across conformations.
- Parameters:
X (DataFrame) – Feature data containing molecular descriptors across conformations.
y (Series, optional) – Data labels (not used in calculation, exists for compatibility).
ignore_nan (bool) – Whether to ignore missing values (all 0 values are treated as missing).
- class pyCADD.Dance.algorithm.consensus.Mean(lower_is_better: bool = False)[source]
Bases:
AverageArithmetic mean consensus model.
Alias for the Average class providing the same arithmetic mean functionality.
- class pyCADD.Dance.algorithm.consensus.Geo_Average(lower_is_better: bool = False)[source]
Bases:
_ConsensusGeometric mean consensus model.
Calculates geometric mean of molecular descriptor values across conformations. Geometric mean is defined as: geo_mean = (product(x_i))^(1/n)
- __init__(lower_is_better: bool = False) None[source]
Initialize geometric mean consensus algorithm.
- Parameters:
lower_is_better (bool) – Whether lower values indicate better performance.
- fit(X: DataFrame, y: Series = None, ignore_nan: bool = True) None[source]
Calculate geometric mean across conformations.
Takes absolute values for calculation, then applies sign.
- Parameters:
X (DataFrame) – Feature data containing molecular descriptors across conformations.
y (Series, optional) – Data labels (not used in calculation, exists for compatibility).
ignore_nan (bool) – Whether to ignore missing values (all 0 values are treated as missing).
- class pyCADD.Dance.algorithm.consensus.GeoMean(lower_is_better: bool = False)[source]
Bases:
Geo_AverageGeometric mean consensus model.
Alias for the Geo_Average class providing the same geometric mean functionality.
- class pyCADD.Dance.algorithm.consensus.Minimum(lower_is_better: bool = False)[source]
Bases:
_ConsensusMinimum value consensus model.
Selects the minimum value across conformations for each molecule.
- __init__(lower_is_better: bool = False) None[source]
Initialize minimum value consensus algorithm.
- Parameters:
lower_is_better (bool) – Whether lower values indicate better performance.
- fit(X: DataFrame, y: Series = None, ignore_nan: bool = True) None[source]
Calculate minimum values across conformations.
- Parameters:
X (DataFrame) – Feature data containing molecular descriptors across conformations.
y (Series, optional) – Data labels (not used in calculation, exists for compatibility).
ignore_nan (bool) – Whether to ignore missing values (all 0 values are treated as missing).
- class pyCADD.Dance.algorithm.consensus.Maximum(lower_is_better: bool = False)[source]
Bases:
_ConsensusMaximum value consensus model.
Selects the maximum value across conformations for each molecule.
- __init__(lower_is_better: bool = False) None[source]
Initialize maximum value consensus algorithm.
- Parameters:
lower_is_better (bool) – Whether lower values indicate better performance.
- fit(X: DataFrame, y: Series = None, ignore_nan: bool = True) None[source]
Calculate maximum values across conformations.
- Parameters:
X (DataFrame) – Feature data containing molecular descriptors across conformations.
y (Series, optional) – Data labels (not used in calculation, exists for compatibility).
ignore_nan (bool) – Whether to ignore missing values (all 0 values are treated as missing).
- pyCADD.Dance.algorithm.consensus.average(data: DataFrame, method: Literal['ave', 'geo'] = 'ave') Series[source]
Calculate average values across molecular conformations.
Provides functional interface for average calculations: - ‘ave’: Arithmetic mean - ‘geo’: Geometric mean
- Parameters:
data (DataFrame) – DataFrame containing molecular data to calculate averages from.
method (str) – Average calculation method (‘ave’ for arithmetic mean | ‘geo’ for geometric mean).
- Returns:
Series containing average values.
- Raises:
RuntimeError – If method is not ‘ave’ or ‘geo’.
- pyCADD.Dance.algorithm.consensus.minimum(data: DataFrame) Series[source]
Extract minimum values (best scores) from DataFrame columns.
Useful for extracting optimal scores such as best docking scores.
- Parameters:
data (DataFrame) – DataFrame containing molecular data to extract minimums from.
- Returns:
Series containing minimum values for each row.
- pyCADD.Dance.algorithm.consensus.maximum(data: DataFrame) Series[source]
Extract maximum values from DataFrame columns.
- Parameters:
data (DataFrame) – DataFrame containing molecular data to extract maximums from.
- Returns:
Series containing maximum values for each row.
- pyCADD.Dance.algorithm.consensus.std(data: DataFrame, axis: int = 1) Series[source]
Calculate standard deviation.
- Parameters:
data (DataFrame) – DataFrame containing molecular data to calculate standard deviation from.
axis (int) – Calculation axis (0 for rows, 1 for columns).
- Returns:
Series containing standard deviation values.